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SELECTION OF A ZERO APPROXIMATION FOR THE POSITION OF
AN ARTIFICIAL EARTH SATELLITE IN A PHASE OF ITS
ORIENTED MOTION USING A DIPOLE APPROXIMATION
OF THE GEOMAGNETIC FIELD

V. 8. Noveselov
1. Statement of the Problem /123

We will solve the problem of defining the zero épproximation
for the angular position of a round AES in the phase of oriented
motion. 1In this phase, it is advisable t¢ define the satellite's
position using "aircraft" angles v, ¢, and 6. Here ¥Y--the angle
of yaw, ¢—-~the angle of bank; and 6~-the angle of pitch. For the
oriented motion of a satellite, we may adopt an approximation of
the angles ¢, ¢ and 6 in the form of trigonometric polynomials in
terms of powers of the argument of latitude. We will limit our-
selves to considering terms of the second power:

qJ::_L_J&] +Dyysinu-+ Dy cos u+.D14 sin 2u-4- D15 cos Qu,
=Dy + Dy sin st +-Dz €Os 1+ Doy 5in 28+ Dys cos ;.
=Dy +Dg; sin 5-+Dy; cos u+Dy sin2u+Dys cosDu, - (1)

In formula (1), qu =c¢const (p=1, 2, 3; gq=1, 2, 3, 4, 5) and
u is the argument of satellite latitude. For the circular orbit
in point u = w,t, where w; is the orbital angular velocity, t is

time measured from the time of passage across the eguator.

As we know,the geomagnetic field can be approximated to
within 12% by a dipole field with an axig coinciding with the
Earth's axis of rotation. Thus in defining the angular position
of the satellite, using a magnetometer to determin the zero appro-~
ximation ng, we will proceed from a dipole model of the Earth's



magnetic field.

Let us designate by Hx' Hy and HZ the projections of in-
tensity of the geomagnetic field onto the axes of a system rigidly
connected to the satellite. In complete orientation of the satel-
lite, the x axis is given as directed along the positive trans~
versal, the y axis--orthogonally to the orbital plane, and the z
axis--along the radius-vector of the center of mass. We will use
i to designate the orbital inclination of the AES to the egquatorial
plane, and Hy will stand for some constant typical of the satel-
lite's flight altitude.

On the basis of a dipole model for small angles of orienta- /124
tion, we will write
H7'H, =sinicos u--0cosi+20sinising,
H7H = -y sini cos a3-cos i—2e¢ sinisin &,

H;'\H,=8sinicos u—¢ cosi—2 sin i sinu. (2)

Given that we know, by the readings of the magnetometer,
the values Hx’ Hy and Hz in.some phase of oriented motion of the
AES. To enhance the accuracy of these values, it is expedient to
statistically smooth the tables for H. HY
lish the shape of approximating formulas. For this purpose, let

and Hz. Let us estab-

us substitute the approximating expressions of (1} for the angles
of orientation on the right sides of the relations of formula (2).
We will then find that

HAH =D cosi+ Dy sin i+sin_u. (Dyg cosi+2D4 sin i
| —Dysiné)+ cos u (Sin i +Dhy cos i+ Dy sin i)+ sin 2u (D, cos i+
+Dgy sin i)+ cos 2u (Dy5.cos i—Dyy sin i)+
4+ Dyesin i sin 3u—Dy, sin i cos 3a,

(3)



. o , . |
H“ 1Hy= - Dygsini+cosi—Dy,sini+sin u _(‘-— ‘%‘Du sini— 1

—2D,, sini+ Dy sin i) + cosu(—Dy sini —%-D,g sin i—D,, sin i) + ‘
~+sin%xu ( - -é— Dyy sini—D,y, sini ) +
+cos 2u (-_-%D,asiﬁi + Dmsini) F
~ 4-sin3u ('——’— Dy, sini —IDy siri i) +

+cos3u (-— —D,s sin i + DM sin z)

P L - . - . . (4)

_ 1 L
HOH, = 5 Dy sin ;—I.?m cosi+sing (‘;l_.—Daa sini—2sini—
—Dy, cos i}+-cosu ,(Dm sini +3 2 Dygsini—D,, cosi ) -+
+sin2g ( 032 sin zf—D24 cosi ) +

—]—cos Qu (—- Dsa sin 1~D25 cosi)+ —-D34 sini sin 3u+

-+ 035 sin é cos 3. o o

e

(5)

i

Formulas (3)-(5) indicate that it is expedient to approxi- /125

—

mate the table of magnetometer readings in the form of trigono-
metric polynomials in terms of powers of the argument of latitude

with the computation of terms to the third power exclusively:

szﬁu-l«}—Hm sina-+Hycos a+H,, sin 21;4—
,jﬁligf?s 2u-+Hygsin 3u+H\; cos 31},,

(6)
H T e -
H”+H9? sin u"'H% COS &+ Hyy sint 2£E+H25 cos 2+
+H2631T1 3u-+H,, cos 314 (7)
H !;’;:I:/T!; ;H;:‘—H:;a cosu+1f1y s1nﬂ2u-i: -
+ Has 008 2+ Ao sin 3+ Hyp cos u. (8)



In the zero approximation we will ignore errors in magneto-
meter readings after statistical smoothing. In other words, in the
zero approximation we will equate the values Hx’ Hy and H, obtained
through formulas (3)~(5) and (6)-{8). The coefficients qu will be

marked with the exponent "zero."

Two approaches are possible. Approach (A), in which a stat-
istical smoothing in terms of the complete formulas (6)-(8) is con-
ducted, or the simplified approach (B), where statistical smooth-
ing is done on truncated trigonometric polynomials which contain

expansions to the second power, namely

H,=H11-+Hm sinu4-H\5 cos u—f—Hﬂ'v“ sin 2u:+}}-;5 cos 2u, \
e

(9)

{1;,=.H21+H22 sin u‘]-.(}ga COS u+f}24 SIH 2u+i'}25(:052u,

(10)

H2=H 3f +Hy it Hys cos 4 "‘FféQ sin 2u'+f17'35 €os 2::-. . l (1)

Let us state the following problems. Problem l: is it pos-
sible, by using only magnetometer readings, to define ng. Since
in section 2 it will be shown that problem 1 has a negative solu-
tion, problem 2 arises: how many additional conditions, which do
not depend on the magnetometer readings, must we have to define

D0 and which formulas define ng if we use the value of angles%@

pd i
¢, ¥ and 8 at several points in the orbit of AES motion.%ﬁ%g@&ém

2 is solved in section 3. It is also advisable to state problem
. 0

: def D
3: to define bg

vector at several points in the orbit of satellite motion. This

if we know the readings of some second physical

problem is examined in section 4 of this study.



2. Inadequacy of Magnetometer Readings for
Selection of a Zero Approximaticn of the Angular

™~

Position of an Oriented AES using a Dipole Meodel
1
of the Field

Let us examine the simplified approach, (B). Given magneto-
meter readings which have been statistically smoothed through
formulas (9)-(11). We equate the free terms, and also the coef-
ficients at sin u, cos u, sin 2u, cos 2u in formulas (3)}~(5) and
{9)-(11) respectively, multiplied in advance by Hal. To define

ng we will find the following equations:

o

D% cosi+ DS sini=H, H;,
D% cosi +2D% sini—D%s sin i=H oM,

DYy cosi+ Diasini=H H'—sinl,

(12)
D?t} COS i+DgS SindHMHEI,
Discosi—D%ysin i=HHY,
i T - S
I - o~
— ?33””_‘9393””=H2|HE‘—cosi,
1 mooo s - - ~
=y Dy sini—20% sini+ D% sini = HoH7,
) 0 wini_ | g ot L 13
— D% siNi—— Dis sin i—DY%sini =H23H0—1’ ( )

t

| 1 - L

| — 5 Dhsini—Dhsini=Hy,H:1,
!

\

i - L
——5 Dissini4- D sini= HyH:

N

|



T o ,

P 5 D5 sin i—DS cosi=HyH;?,

1 L . o
TD&; sin i—D% cos i = HypF;14-2sin i,

L1 o, , o~
D sini+ = Dissini—Discos i=HyuH7,

5 Dhasini—Db cosi=HyHi, . (14)

1 fon e .
i Dia sin i—D¥Es cos i=FHyH™

— = -
s e s

Let us compose a matrix of coefficients for unknown D0 in /127

pa —
equations (12)-(14)
HE Dg= ]
cosi 6 0 ¢ 0O 0 O O 0 D Bsini0 O O
Ocwsi0 0 6 6 0 0 0 0 260 0 0
0 0csi0O 0 0 0O O C O 0 O 0Osnt0d
0 0 Dewsz0 © 0 0 0 0 O Osnz0 O
0 0 0 Ocsi 0 0 0 O 0 O-=:iQ 0 0
0 0-fsni0 0 O -si0 0 0 0 0O 0.0 O
{0 o odsmo 2sinio 06 Osm 0 0 0O 0 O (15)
gint 0 0 O-3snz 0 O O -swiQ O 0 O O O
; O4su0 0 0 0 0-sini0 0 O 0O 0 0 0
" 0 OJsinio 0 0sm0 00 000 0 0
’ 0 0 0 0 0O -«<05i0 6 0 0 O Ofwmi0 O
. 000 00 v-wtO 0 0 0 0 0zuiz0
' 00 00 0 0 0=xst0 0 sini0 0 0 bans
6 00 DO 0 0 O0-tsiO OO O 0
"t oo 000 00 0 O-wsi O OfsiiO O 5

Given that 1 # 0 and i # 180°, i.e., the AES orbit is not
equatorial. Let us multiply the elements of the 6th line of the
matrix (15) by 2cotani, elements of the 12th line by -2 and add
the obtained expressions with the corresponding elements of the

ol
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corresponding elements of the 3rd line. Then the elements of the
new third line will be zero. Given, furthermore, that i # 90°. Let
us multiply the elements of the 4th line by 1/2 tan i, then elem-
ents of the 1lth line by -2tan i, and the elements of the 15th

line by tan i. We will add the obtained values with the correspond-
ing elements of the 7th line. As a result, the elements of the

new 7th line will be =zero. Let us multiply the elements of the

lst line of the matrix DB by tan i, elements of the fifth line by
1/2 tan i, elements of the 1l4th line by -tan i and the obtained
expressions will be added to the corresponding elements of the 8th
line. The elements of the new 8th line will be zero.

We have shown that the 3rd equation of system (12), and like-
wise the 2nd and 3rd equations of system (13) will depend on the
other equations of (12)-(14). The rank of the matrix (15} is no

greater than 12. Equations (12)-414) are insufficient to define
0 ‘ ¢

D
rd

Let us examine the same problem using approach {A). In this
case, statistical smoothing is done through formulas (6)-(8). We /128
equate free terms and also coefficients where sin u, cos u, sin

2u, sin 3 u, cos 3 u in formulas (3)-(5) and (6)-(8), respectively,

have been previously multiplied by Hal. To define ng we will have
egquations (12)-(14) in which the 'tilde' exponent above H has

Pg
been omitted, as well as the following additional eguations:

 DksmicH 5, “Disini—HaHy", | (16)
e

‘ -—%—D?s sin i+ D% sin i=HyH7, \ ' (18)

5 Dyisini=Hyghlyl, 5 DissinimHiH; \ (19)



On the basis of equations (16} and (19) we can assume that

Diy=(Hy sin iyt  Hyg— -
D= (Hosiniy (Hy— 3 te), ] (20)
I S :
pés—lfio sin 1? i (ng‘f—?ﬁls) . ' \ (21)
a

Equations -(16) and (19) thereby will be excluded from the examin=-
ation. By omitting dependents, the 3rd, 7th and 8th equations of
system (12)-(14), we will have 14 egquations of a truncated system
{12)-(15) and (17), (18) to define 13 unknowns ng (p = 1,2; g=
- 0 0
=1, 2, 3, 4, 5) and D,, DJ,, D3,

Let us write a matrix of coefficients with unknowns

T ’ Do \ ]
cesi 0 0O 0 Q@ o 0 0 0 © 0 sund 0
0'cosz G O O 0'0 0o o 0 ‘25Lru0 0
"o 0 0 nozr D 0o 0 Ol o 0 0 ~0 sini
6 & 0 Ocsi O 0 0 O 0  0-snio0
0 o-dsinz0 0 O-emm OAI‘J ¢ 0 0 O
0310 © O 0 0 st 0 D 0 o0
0 admeio ¢ O sai0 0 0 0 O O (22)
=l o 0 6 o 0 <0 0O 0 @ 0 0 st
© 0000 O0-miO 0O O 00
0 0 0 0 © 0 0-est 0 0 sini 00
6 0 0 6 0 © 0 O-st0 O}sine0
0 p 00 0 0 00 0-wsi O Ofsin
0 0 o0lsiaidD - 0 O O O«ini O 0 O
0 0 0 Osini 0-0 0 im0 -~ 0 O O
Let us consider, as before, the non-degenerate case i # /129

£ [0°, 90°, 180°} . Let us multiply the elements of the l4th line
of matrix Da by 2 cotan i, elements of the 11th line by 2 and add

to the corresponding elements of the 4th line. Then all elements

of the new 4th line will be equal to zero. Let us multiply the



elements of the 2nd line of matrix (22) by - %, elements of the 6th
line by -cotan i and add them to the corresponding elements of the
10th line. All elements of the new 10th line will be zero. Let

us multiply the elements of the 4th line by 1/2, elements of the
l4th line by cotan i. By adding the obtained expressions to the
corresponding elements of the 11th line, we derive a new 1llth line
with zero elements. Let us now multiply the elements of the 3rd
line of matrix DA by - %, elements of the 13th line by -cotan i

and add them to the elements of the 12th line. The elements of the
new 12th line will all be equal to zero. We have shown th§t the
4th, 10th, 1llth and 12th equations of this system will be functions
“of the other eguations. The rank of matrix (22) is no‘greatef than
10. Egquations (12) and (17) are insufficient to define the desired
13 unknowns.

Let us now consider degenerate cases. Given that sin i = 0.
The rank of matrix (15) is egual to 10. Egquations (12) of approach
(B} yield '

\ Dii=Hyy (Hycos i)™, Dyt Hy, (Hy cos i), 1
{(23)
o _ = -1 0 _ = R N -1
DIB@T Hl3(H0cos iy -, Dy, = H14(H0cos i)y —, D15_ Hlstﬁocos i) .
The left sides of equations (13) vanish. 1In this case we must
have prag T T B T
.\ Hmfﬁo COS i, '__'HE:D, I;Zf—rzg=6, Hg.;:—o, H%I‘L
(24)
Equations (14) yield L o
| D= Hy (Hy cos )71, Do=—Hy (Hycos )1,
D= —Hys (Hycos i)™, Dly=—Hy (Hycos i)™,
- DSs=—Hy (H,cos i)\, : (25)

N



Formulas (23)-(24) are derived according to formulas (2) where
sin 1 = 0.

Thus, for motion in the equatorial orbit, with the aid of
a magnetometer in approach (B), we can uniguely define'flﬁéfpéff
‘tions in angles Y and ¢ and pitch fluctuations of the satellite
in the indicated plane are not defined. The zero approximation
for the trigonometric approximation of satellite fluctuations
in yaw and bank can be calculated through formulas (23) and {25).
The left sides of additional eguations (16)-(18), obtained by
approach (A) for sin i = 0, vanish. Thus in this case, approach
{A) is equivalent to approach (B).

>

Let us consider a second degenerate case, i = 90°. The /130
elementary transformations show that the rank of matrix (15) is
egual to 8. We can use the first 4 eguations of system (12} and
(14) as our independents, and also equations of system (13). Thus
to define the zero approximation of the satellite's angular posi~
tion, appraoch (B} requires us to have another & independent con-
ditions. For the particular case of plane oscillations of a satel-
lite in polar orxbit, the angle 6 is subject to definition. Among
equations of (12) only 4 independents will exist. And we require
one additional independent condition. For the case i = 90°,
equations (12) might be reduced to the form

| 2DY—Dis=HpHyt, Dh=HyHy'\=—HH5,
- . Dh=H,H;, (26)
; D= —1 +H  Hi

Formulas (26) show that in this particular case, the coefficients
Dgz, DgB and Dg4 are defined by magnetometer readings unigquely;
to define the coefficients Dgl and Dgs, however, we require ad-

ditional independent condition.

10



We will discuss the second degenerate case with the aid of
formulas of appreoach {A). Since equations (14) in tﬁis case depend
on equations (12), from which only the first 4 are independents,
then taking (17), (19) and (20} into account, we arrive at a sys-

tem of equations for 13 unknowns D q (p =1, 2; gq=1, 2, 3, 4, 5}

and Dgl, Dgz, Dg3 with the following coefficient matrix:
w S Y |
: 9 000 0 00 0.0 0 OsmzD
000 00 000 00 2um0 0
© 0000 0 06000 000
OOOlfJO 0 0 0 0 0 0 0 swme
0 O4wmi0 0 O-miD O 0 O O O
) 0 0 o0-lswmo .-29m0 0 O sn: O 0 0
w0 00 jsni 0 0 0 -sine 0 0 0 O
0Jwi0 0 0 O O-swa® 0 -0 0 O (27)
0 0%smD O Osu0' 00 0 0 0:
0 0 0Jm0 © 0 0 O-sm 0 0 O
0 0 0 O-jsini O 6 0snio 0 0 0

The coefficients Dg4 and Dgs are defined by formulas (19) and (20)£131
The first, 2nd and 4th lines of matrix (27)show that in the given
case the first three coefficients of the approximating trigono-
metric polynomial for angle 8§ will be uniquely defined. In real-
ity, the 1lst, 2nd and 4th egquations of system (12), allowing for
{20) , here vield . &

D= %‘ (Hm-l- JTH16+H37) Hp,

anzjf:{uH{], D= H HiL (28)

Thus, in approach (A), fluctuations in the plane of the polar orbit
by magnetometer readings are uniquely defined. But in defining
fluctuations in angles ¢ and ¢ for 10 unknowns, we conly have 7
equations. Thus we require 3 additional independent conditions.

11



3. Definition within the Framework of A Dipole
Model of the Zero Approximation of the Angular Position
of an . Oriented Satellite, if the Values of the Angles

for Several points are Known

‘Analysis’of’ degenerate cases conducted in the preceeding
section showed that several coefficients of approximating poly-
nomials for orientation angles are defined by magnetometer read-
ings uniquely, whereas to define other coefficients additional
independent conditions are required. It appears useful for un-
degenerate cases to isolate those coefficients of approximating
polynomials which uniquely are defined by magnetometer readings,
to find clear expressiones for these coefficients, and then ex-
amine the question of defining the remaining coefficients in the
presence of additional information on the value of orientation

angles at several points in the satellite's orbit.

We will consider a undegenerate case, i.e., given that
sin i # 0, cos i # 0, the 3rd, 7th and 8th eguations of system
(12)~-(14) are dropped, since -they are dependent on the others. The
remaining 12 equations of system (12)-(14) are transformed with
the aid of elementary transformations. Eguations of system (12)-
(14) will be written thus:

T T .
3 | *Dlhcosit Dbsini=HyH;', | (29)

—T—

L e T e
Dgs=("‘_Q‘Hu“‘CfngmH“Hsa)(HDSini)?I’ i

— - | (30)
D?‘l CO08 i_+Dgﬁ Sil’l i=[~114H0_‘i; ""
T .

D?1+D?5=(H11.+[};5) (H, CO—S:Q:-’ ].‘
. : . (32)
e R |
.Dg2= "‘*2" Ctgl -—_ "'2"" (Hg] —Hgs) (HO Siﬂ i),_-l, 7
e e R , (33)

12



]A. .” . oo o )
. ‘ " ‘Q‘Di2+DSS=“H24 (H[)Siﬂ!:)_], J
- : — - -

7 Dht. Mpsin i, (34)/132
Dn‘*Ctgi—“(Hﬂx"f'st) ("(1’0‘5““)_1 | e
— T {35)
e Dh= B2 Gocos i, |
[ - C e (36)
34,74.—'—-Ctg2 ;—-(Ctg L Hgl—ctgﬂ H25‘~2H32) (Hg Slﬂ i \
Dbt (37)
DnCOSLuDa; sinie — w( Hu+ctng2,,+H33)H ! \
o sAFROET 1 (38)

+2924—(H11—2H34) (Hycos i)™, t
: T (39)

Dh= Dty = —(Hyy—Fg) (Hy cos 7. |
T (40)

The system of equatians (29)-(40) shows that 4 coefficients
0 0 0 0 . .
Dl3' Dyps D34 and Dyg are defined uniguely by magnetometer read-

ings. The other 11 unknowns have 8 equations (29}, (31),(32), (34),
(36), (38B-40). '

Given that the values of angles ¢, ¢, and € are defined for
values of the argument of latitude w, with the aid of local con-
trol of orientation by measurement of two or 'more physical vectors.

In this case, additional equations (which follow) can be composed:
' 2]

] - —-— R,

—}—Dl, sinuﬁ Dm cos uk—z—Dm sin zukTD cosm’z—uk:;fuk) \ {41)
DD 51 sin uk+D;3 cos uri-Dm sm 2uy D5 cos 2u,,—— (@), | (42)
Dari Ds_; sin uk+Dmc?iuﬂ:D34Sin2uk+D35 coszurﬂﬂ (uk) \ ' {43)

With the aid of formulas (30), (33), (35), (37), we will exclude
from equations (41)-(43) the coefficients Dg3, Dgz. Dg4, DgS; then
we transform the obtained equations, using formulas (28), (31), (34),

(36), (38-40). The sequence of transformations is reflected on

13



the right sides of the relationships which follow~~these are trans-
formed equations for (41)-(43), respectively:

0w 0 1 .
Du S uk+Dl4 €08 uk»—D‘éa = m [’ (ﬂk}—D?a Cos i,—
€08 2ip

e ot H Hi 2 S Hzﬂo] . (44)

— (Dl sinu,+ DRy cos up)+ D= Ny [ (i) — D% sin u,+

2 ~ ~
e (Has_Hsz)HS“I*—'M(ﬁfﬁn—ﬂsl)*’fe—]_

cos ¢ COS &

sin2u, {1 %3 -~ _
St (3 iy Fog) Hit = @,

. - (45)
. _(P?l sina,+Diy cos ) +DY=1g i [ﬁ (uk)—D&; sin 2u,—
“_Dgﬁ COos Quk' s;r;nuf H]IH" czlsna;h HmH 1, -
! ! ,
( ~ Teing (T ng—f-CfgI H24-}H33> Hn_ ] == _Bk'
B T (46) /133

In writing equatiqns (44)- (46), cases of sin uy = 0 and
cos u = 0 are eliminated. The left sides of equations (45) and
(46) are derived from the left side of equation (44) by multiply-
ing it by -1. System (44)-(46) contains only one.ihdependent equ-

ation.

Let us introduce the notation

o

| - .
* Qk'=%(l1fk+d)k+8k)_' ! o (47)

On the average, system (44)-(46) is tantamount to a single equation

| 'D”sln.M,ﬁ—Dmcosu,z Dzsm - {48)

For the completeness of the system of determinant equations,

we must minimally know the angular position of the AES at three
14



different points for Uy s U, and u;. Let us fulfill the sequential
computations of equations of type (48) for the three indicated
values of the argument of latitude

DY (sinay—sinw)+ DY, (cos U —CO0S Uy)= Q,— Qg,
Diy (sm ﬂ1*51ﬂ ”5)+Dx4 (cos 4, —cos #)=Q—Q;.

(49)
We will resolve equations (49} relative to Dgl and Dg4
o Ql (cos ua—cos uo)+ Qs (COS Uy —cos u3}+Q3 (cO5 ug—CcOs u;)
= .. S8in (ua u2)+sin (ul—u3)+sm (ug—ul) . '

. N (50)

L Q; (8in u;—sin uy) —£— Qo (sin u1—31n u3)+ Oz (sin uy,—sin ul)
sin (a;.,-—uz)-i- sin (— u3)+sm (uzﬁal) ) ’ :
- e L e ' (51)

L

With the aid of equation (48) we will find, on the average, that

D= - ! [D‘,‘; (sin‘ui—%sin y+sin ) 4-

+D14(cosu1+cosu2+cosu3) QI Qg_ ] (52)

i _—

The clear expressions found above were for 7 coefficients
0 0 0 0 0 0

0 .
Dll' DlS' Dl4’ 022, Dyqe D340and D356 Eguations (32) and {34)
make it possible to define Dl2 and Dls in the form
“ Dle==2(yHigsini'+ DRy, | (53)
» 015“(H11+H15) (HBCOS ‘)Thi_DIl l (54)

= [T o

With the aid of formulas (36), (39), and (40) we find that /134

Dz]— ( H14—H31) (HD cos z) 1 —«—-Dm, t (55)

"..D34—_( Hn ﬁg)(Hucos'f}—‘;-:]?Dl?l, J (56)
i-, et 7 e e - - -
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D25~—(H31—H35) {H,cos L) ‘—|—D _ l (57)

. - . e — =

Equations (29), (31) and (38) permit us to define the remaining

unknowns . :
e [
D= = (r— 12+Ctgl Hz; +H33)+ (H, sin 5)_‘ +023 Ctg ‘!“
B (58)
. Dw_Jﬁlﬁﬁsml)L—D1C¥¢ 1
v 2 {59)
‘ ‘:' D33-—H,4(H051ﬂ1) 1.._D4ctgi.\ [ | (60)

— — == —_—— ooa

We have examined this case for approach (B). Let us find

out what simplifications can be derived by using approach (A).
In approach (&) we also need 3 additional independent equations;
we will retain equations (29)-(40), but on the right sides we
drop the exponent 'tilde.' Coefficients Dg4 and Dgs can be cal-
culated both by formulas (20), (21) and by formulas (30), (37).
The use of data on the angular position at itwo points is done
just as in approach (B). We will have the same final formulas
{(48), (51), and (52). Furthermore, formulas (53)-(60) can be
used, but in the first parts of these we omit the exponent 'tilde.'
The coefficients Dg4 and Dgs can also be defined by formalas’ cb-
(talnable from (17) - (18)

Dbt or, | )

1 - N ———— e

Dzs—~H25 (Hosm L)*lm—D 7 1 (62)

Thus, the use of formulas of approach {A) does not lead to
;ny simplifications. We should note that to calculate by formulas
(20), (21) and (61), (62) which take place only for approach (A)
is hardly expedient, since these formulas contain less precisely
defined coefficients with third harmonics. Thus the working
16



formulas will be (30), (33), (35), (37), (48), (51)-{(60), which
are valid for approaches (A) and (B). But the statistical smooth-

ing of measured values of Hx' H _ and Hzis best done by formulas

Y
{6)-(8), since more reliable values of the coefficients will be

obtained.

4. Definition in a Dipole Model of the Zero /135
Approximation of the Angular Position of an Oriented
Satellite if the Direction of the Second Vector is
Known for Several Points

Given in a system of coordinates (x, y, z) rigidly connected
to the body of the@AES we make a measurement of the direction of
some vector S (direction toward the Sun, Earth or other body) .

For a point with the argument of latitude u, we will have measured
values cos (Sk, X), cos (Sk, y) and cos(Sk, z) . According to the

model of motion of the observable body directional cosines of the

same direction have beenAcalculated in the orbital system: cos(sk,
K7 yo) and cos(Sk, zo). The xo, yo, Zg axesJQcoincide

with the %, y, 2z axes in satellite orientation.

xo), cos (S

For small angles of orientation, by analogy with formula

{2} we will write

-

Cos (S, x)-_?—ww-s (S;, Xo}-+ cos(S;. Vo) —6 coé.-(.S-‘k, zt;) .
o8 (S;, y)=—1%cos (S, xo)+ cos (Sy Vo) +¢ €05 (Sp ), |
£0s (Sp 2)=8c08 (S, X))—¢£08(Ss Yo) 1005 (S 20 (63)

T e

Let us substitute expressions(l) in formula (63)

|(bw'f_f—_|—5‘fg_§i‘n 28,4+ D c0s 1Dl sin 22, + DY 005282, 08 (Spy Vo) —
\ — (D% D sin uy+ D cos @y, + D3 sin 20, + D% cos 2u,)c08(Sy, 2,)=
. _=Cos (_Sk?wtxlf ?0?_(23 K Xoh . } ‘ T ) (64)

17



~Oh+ Diysiniey 4 Dy cosi, 4. i
= e+ D% cos uk+Dusm2uk+Di’5cos2a,,)cos (S,

DY - 0
: hok Sln,uk-+p23 €05 tty+ D4y sin 2u,+ DY cosoy ) cos(S xﬂH_}
e TEOS (S, y)—cos(S, vy, POk = (65)
(DR DY it B, cos it
. y e St kT .SSCUS.IIk—{—Dg‘is!nQu +D0 cos 9 - .
.+FDal+ & sin uk+D§3cosuk+Dg4singulengOSsz)).fgs((gk' Yolo+ \
T TGS s,
L (66)

With the aid of formulas (30), (33), (35), (37) we will
exclude from equations (64)-(66) the coefficients D‘Z)LB' Dgz, ng,
DgS' then transform the obtained equations, using formulas (29),
(31), (34), (36), {(38)-{40). The sequence of transformations is
reflected on tohe right sides of the transformations cited below

7 Dhsin. iyt DR cos uy— D=2 sinu, cos‘l(Sk, .VaH'
~ctg i cos (S, 29)] 7 [cos (S x)—c0s{(S,, x)—
— 1??3 COS i, COS (Sy, yo)+Dhisin2u,c05(S,, z)+

+ DY cos2u, cos (S, :zo)+H~n‘ (A, sin ‘i’)—lv.sin i, COS (S ‘zo)+
—5—_1?,,, (Hysin )™ cos u, cos (S, 2zp) + %(% f;12+ clgi }';'24 +};33) X
X (HysTn i)—.l cos (S, zﬂ)—f(ﬁu-l—ﬁls)(ﬁocosi)“l cos 2u, cos (S Yo) +
| +2Hyy (Hysini) sinuycos (S y)l=Wh

(67)

b e e cmmemm T —_— — o e— - e

. EQI ' — (D sin -+ DY cos ug) + D=
=[2sinu, cos (S;, xp)+cos 1, cos(S,, 2,)]7[cos (S, ¥) —c0s {(S,,
+D~?3 Cos &, Co8 (S, xp)—Disinu, cos (’:S’k. AR (S Yo+

“+ (Flis— ) (€08 )05 2, €05 (Syy 20) — = Hig— F) X

/136

X(Hycos i)~ sin 2u, cos (S, z)—2 (—;~ ﬁ14—H~3!) X

K{Hcosi)  cos?u, cos'(S,,, 2o+ (lr"—}]I -H:im) (Mg cos )1

Xcos 2u, cos (Ss, xO)A—Qf:!;‘ (H, sin i)~ sin 1yCos (S, Xg)|=—=0;,

(68)

18



- — (P sinag+Dlicos uy)F D= Bt S
—[—cos iy COS (Sp, Vo) --etg i cos (Sy, xo)] ™! [cos (S, 2)—c08 (Sp, 20)+
+.Dzz sin 4, €08 (Sy, Yo)—(Dia 5in 2a,+ D55 cos 2u,) €0S (S, Xp)—

—~sm—‘ isinu, cos (S, xp) Hnf —sin™icos u,/'cos (Spx) H o1 —

— % sin~li cos (S, Xy) (% 1;1241— ctgi§q4+ﬁ%) Hii4

+2cos™!icosu,cos(Sy Vo) ( HM ]N-:'B,) Hy'
4-cos™1i sin 2u, cos (S, ¥y (—HHHHM) Hyl+

—i—cc)s—1 icos Quk cos (S,,, Yol (H3,—H35) H—‘]——

(69)

Equations (67)%(69) are a system of 3 equations of which
only one is independent. For the correct definition of the zero
approximation we must know the direction of the second physical

vector at at least 3 different points in the orbit.

Equations (67)-~(69) have the form of equations (44)-(46),
1f in the latter the quantities ?k, @k and Gk are replaced by
. 0 0 0
T k' @ X and 9 K’ respectively. Thus to define Dll' 14 and D23
we have formulas (50)-(52), in which Qk is replaced by the guan-

tities

Qi = ('Fk-l-‘I’k-i-ek) ‘\
- (70)s

5. General Remarks on the Method of Spectral
Approximation

1. Equations of system (2) are functionally dependent, since

D(Hx, Hy, Hz) o

D(¥,d, ©)

The corresponding relationship can be written as

. Ctng-ﬁsmz( —]—ctg2;——3-c052u)h'u—- ,cosu—l-QH smui] (71)

Thus, omitting equations (13), we come to 10 equations (12) and /137
(14), the rank of matrix for which in the undegenerate case is 10.
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This derviation follows from the fact that the determinant for

10i. Calculation of terms

unknown DGq and Dg is equal to (—l)scos
of the third power in approach (A} will permit us to write ad-
ditional equations (16) or (19). We find, as in section 2, that

we have a system with rank 12.

In approach (B) we have no additional equations (16), (19).
But the equations derived in section 2, as research in sections
3 and 4 showed, also have rank 12. To explain the cause of this
circumstance, we equate free terms, and alsc terms where sin u,
cos u, sin 2u and cos 2u are on the left and right sides of formula
{71} . We will have, respectively

otgi Hyy=sini (5% ctg?i ) Hy 5 Hygt Hip,
‘ . 1 ' '
cigi Hoyy= — 5 Hy+2Hy— Hy,
, . 1
ctgi Hy= —Hy— & His+Hy,

. 1 1 P
ctg i Hyy=— ot Hy— w5 Hig— Hy, (72)

' . [ | . s
egiHy=— g Hy—Hy— 5 Hat+Hy

Since two last equations of system (72) contain coefficients
in trigonometric functions sin 3u and cos 3u in approximating
formulas for H, and H, (not examined in approach B), then these
two equations in this approach should not be satisfied. Thus
in approach (B) relationship (71) must be satisfied only partial-
ly ; it becomes possible to derive two independent equations. For
the problem of selecting the zero approximation which will then
be refined, this position is completely admissible.

2. As was noted, system (2) has only two  finctionally >



independent equations. The question arises as to whether or not

this system can be supplemented after differentiated equations (2)

. H—IHx——sinisinu-l—qJ cosi-+20 sin isina--28sini cos #,
H‘UA=TNWszuma+¢smcmnu—2¢smzmnuw
— 2w smzcosu . ’
\ff*hahﬁ’mnzcosu ﬁsulzmnu ?c05b%2$nacosu {(73)

If the approximating formulas (1) are substituted in (73), and

the coefficients in sin u, cos u, sin 2u, cos 2u on the left and

right sides of equation (73) are equated, we derive 12 equations

to define 15 unknown ng. But these equations will coincide with /138
the system consisting of the last 4 equations of each of systems
(12-(14), since the operation of differentiation and substitution
instead of ¥, ¢ and 8 of the approximating polynomials can ex-

change places. Thus in the use of spectrdl approximation of the
orientation angles for some interval of time of ©sScillatory motion

of the AES about the center of mass, the differentiated relations

in (2) are automatically satisfied.

3. It was suggested above that the axis of the magnetic
dipole coincides with the Earth's axis of rotation. If we reject
this suggestion, then the displacement of the magnetic pole both
in latitude and longitude will be calculated by the formulas

:—1—1H =$in i, cos (u—l—uo) -l—&p cos LM—l——QB sin £, sin ( u+u0)
H_—lH =~y sin i, cos (u—|—uo)+cos i,—2¢ sin i, sin (2+ &),
Hy\H,;=bsin iy cos (u+ug)—¢ cos i,—2 sin i, sin (£+4,).
R L. e (74)

Here i., is the 1ncllnatlon of

M Wthe plane of the circular orbit of
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the center of mass of the satellite to the magnetic eguator; u, is

some constant. Expressions (2) and (74) show that all formulas
derived in this study will take place for the case in point, if
the arguments of latitude u are replaced by u + Ugye and inclina-

tion i by i The general-conclusions on the methods of construc-

ting the zefo approximation for the angular position of an arti-
ficial satellite in the phase of oriented motion remain in force
--when the more precise model of the geomagnetic field is used.

4. To enhance the accuracy of the zero approximation, it-is‘
useful to define the geomagnetic field model with the aid of a
fragment of the Gaussian series. The methods of the present
study can be used if projections of intensity of the geomagnetic
field onto the axes of the orbital system of coordinates are
smoothed in advance in the form of trigonometric poclynomials in

terms of powers of the argument of latitude.
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